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Stochastic analysis on crack path of polycrystalline
ceramics based on the difference between the
released energies in crack propagation
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The crack path of polycrystalline ceramics has been theoretically analysed with a stochastic

model based on the difference between the released energies in intergranular and

transgranular crack propagation. Assuming that the path with the lowest released energy

should be realized as the actual crack path, the expected values of the fraction of

transgranular fracture on fracture surface and the fracture toughness of polycrystalline

ceramics were formulated as functions of grain size and the critical energy release rates of

grain and grain boundary. By comparison between the theory and the experimental results it

was shown that the stochastic model proposed here expressed the change of the crack path

and the fracture toughness of polycrystalline Al2O3 , relative to grain size.
1. Introduction
In order to improve the fracture toughness of cera-
mics, many studies have been conducted on whisker
reinforcement [1—3], particle dispersion [4—6] and
microstructural control [7—15]. However, it is now
necessary to investigate the relationship between the
microstructure (grain size, pores and inclusions) and
the fracture toughness of ceramics, because even the
relationship for single phase ceramics has not yet been
fully understood. Aiming at this point, the authors in
the previous report [15] measured fracture toughness
of polycrystalline Al

2
O

3
with different grain sizes by

controlled surface flaw (CSF) method and chevron
notched beam (CN) method. As a result, it was found
that the fracture toughness K

IC
of polycrystalline

Al
2
O

3
is approximately 3.8 MPam1@2 with a grain

size of 1.8 lm, increases with an increase in grain size,
and becomes constant at approximately 4.5 MPam1@2

with grain sizes more than 30 lm. Furthermore, it was
revealed that the critical energy release rate calculated
from K

IC
linearly increases with an increase in the

fraction of transgranular fracture on fracture surface
(hereafter the fraction of transgranular fracture).

Based on this result, the authors analysed the influ-
ence of grain size on the fraction of transgranular
fracture of polycrystalline ceramics from perspectives
in the previous study [16]. It is assumed that the
fracture of polycrystalline ceramics is a probability
even such that a crack propagates in the microstruc-
ture, which consists of crystal grains in random ori-
* Author to whom correspondence should be addressed.

entation. Therefore, the fraction of transgranular frac-

0022—2461 ( 1997 Chapman & Hall
ture obtained as a result of crack propagation is also
expressed as the expected value of the probability
event. Our previous stochastic model [16] was roughly
able to explain the influence of grain size on the
fraction of transgranular fracture in polycrystalline
Al

2
O

3
. However, the parameters for selective prob-

ability of crack path had to be assumed in the previous
theory so that theory was not a physical model based
on energy dissipation during crack extension.

In this paper, assuming that the path with the lowest
released energy is realized as the actual crack path,
comparison between the released energies in trans-
granular or intergranular crack propagation leads to
the selective probability of crack path theoretically. In
addition, the modified stochastic model proposed in
this paper is compared with the experimental results
[15] in order to discuss the validity of the analysis.

2. Theory
2.1. Two-dimensional polycrystal with

square grains
In this analysis, as shown in Fig. 1, we assume a two-
dimensional polycrystal (unit thickness) which con-
sists of square grains with the critical energy release
rate G'3!*/

IC
and grain boundaries with the critical en-

ergy release rate G"06/$!3:
IC

. These critical energy release
rates of grain and grain boundary are assumed to be
constant as a first approximation. Here, the propagat-
ing direction of a main crack is denoted by x-direction,

and the direction perpendicular to the main crack is
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Figure 1 Schematic illustration of a microstructure model.

denoted by y-direction. It is assumed that there is no
correlation between locations in the y-direction of the
i-th crystal grain and (i#1)th crystal grain in the
two-dimensional polycrystal, and that a crack extends
at any locations of grain boundary in the y-direction
with equal probability (Bernoulli trial [17]). It is also
assumed that the main crack passes through n grains
as it virtually propagates when uniaxial tensile stress is
loaded in the y-direction.

During intergranular crack extension, the main
crack propagates while deflecting 90° in this micro-
structure. Although the crack rarely deflects 90° in
actual materials, the microstructure shown in Fig. 1 is
adopted because the Bernoulli trial should be intro-
duced in the new theory.

2.2. Released energy in crack propagation
In this paper, as shown in Fig. 2, we calculated the
released energy in case that a crack propagates trans-
granularly or intergranularly after the crack arrived at
the point A which is y distant from a grain boundary.
Here y ranges from 0 to d/2 (d: grain size) to take
symmetry into consideration. The released energy in
transgranular fracture (¼ 53!/4) is estimated on the
assumption that a crack coplanarly propagates in the
grain as shown in Fig. 2a. Although the energy release
rate of grain (G'3!*/

IC
) is a function of the fracture tough-

ness of cleavage planes and the angle between cleavage
planes and a main crack (i.e. the selective angle of
transgranular fracture in the previous paper [16]), it is
assumed to be a constant value as an average in this
paper. After the crack extends to the point A, the
released energy in transgranular crack propagation
can be expressed as follows

¼ 53!/4"P
$

0

G'3!*/
IC

dx (1)

"G'3!*/
IC

d

The released energy in intergranular fracture (¼ */5%3)
as shown in Fig. 2b is divided into two parts, namely,

the crack deflection into y-direction and the crack
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Figure 2 Schematic illustration of (a) transgranular crack propaga-
tion, (b) intergranular crack propagation.

propagation into x-direction. Therefore, the released
energy is given by

¼ */5%3"P
y

0

GI $%&-%#5*0/
IC

(t) dt#P
d

0

G"06/$!3:
IC

dx (2)

where the first term in the right hand of Equation 2
corresponds to the dissipative energy during crack
deflection from point A to B in Fig. 2b, and the second
term to crack propagation from point B to C. Here,
GI $%&-%#5*0/

IC
(t) is the apparent critical energy release rate

during crack deflection and t is deflected length. In
order to estimate GI $%&-%#5*0/

IC
(t), the following approach

is used.
When a crack deflects from point A to B, the deflect-

ing crack which has the main crack length (2a) under
the tensile stress (r), as shown in Fig. 3, is more
difficult to propagate with longer deflected length (t).
The stress intensity factor (KB

I
) at point B in Fig. 3 is

expressed by the following equation [18]

KB
I
"F(t)ra1@2 (3)

where F (t) is the shape factor dependent on crack
geometry and deflected length (t), which was numeri-
cally calculated by Chatterjee using conformal map-
ping. The apparent stress intensity factor KI

I
under the

main crack length (2a) and the tensile stress (r) is
expressed as follows

KI
I
"r (pa)1@2 (4)

Assuming that a crack propagates when KB
I
reaches to

the critical stress intensity factor of grain boundary
(K"06/$!3:

IC
), the apparent fracture toughness

(KI $%&-%#5*0/
IC

(t) ) during crack deflection is expressed by

p1@2

KI $%&-%#5*0/

IC
(t)"K"06/$!3:

IC F (t)
(5)



Figure 3 Schematic illustration of a deflected crack.

Therefore, the apparent critical energy release rate
(GI $%&-%#5*0/

IC
(t) ) during crack deflection becomes as fol-

lows

GI $%&-%#5*0/
IC

(t)

G"06/$!3:
IC

"

p
F (t)2

(6)

The solid line in Fig. 4 shows the relationship between
the normalized deflected length (t/2a) and the norma-
lized apparent critical energy release rate (GI $%&-%#5*0/

IC
(t)/

G"06/$!3:
IC

) in case of deflecting 90° [18]. This indicates
that GI $%&-%#5*0/

IC
(t)/G"06/$!3:

IC
is an incremental function

of t/2a. Consequently, in the small region of t/2a
(0)t/2a)0.02), GI $%&-%#5*0/

IC
(t)/G"06/$!3:

IC
is approxi-

mated by the following linear function

GI $%&-%#5*0/
IC

(t)

G"06/$!3:
IC

"p@A
t

2aB#q

"pt#q (7)

The value of p@ and q estimated by linear regression
analysis using Equation 7 were 9.5]102 and 8.5, re-
spectively. In the previous study, the fracture tough-
ness was measured by the controlled surface flaw
(CSF) method and the chevron notched beam (CN)
method. The value of p is 0.32 lm~1 for CSF speci-
mens from calculation by the value of p@ and the actual
crack lengths a ("150 lm) and the value of p is
3.2 lm~1 for CN specimens from calculation by the
value of p@ and the actual crack length a ("1.5 mm).
By substituting Equation 7 into Equation 2, therefore,
the released energy in a crack propagation from point
 *¼)0 (a c

propagating from point B to C in Fig. 2b is equal to
Figure 4 The relationship between normalized deflected length
(t/2a) and normalized apparent critical energy release rate
(GI $%&-%#5*0/

IC
(t)/G"06/$!3:

IC
). The solid line is a calculated curve by con-

formal mapping method [18]. The dotted line is a regression line.

G"06/$!3:
IC

, namely

P
$

0

G"06/$!3:
IC

dx"G"06/$!3:
IC

d (9)

Therefore, by substituting Equations 9 and 8 into
Equation 2, the released energy in intergranular frac-
ture is approximately equal to

¼ */5%3"G"06/$!3:
IC Ad#

1

2
py2#qyB (10)

As shown in Equations 1 and 10, the released energy
in transgranular or intergranular crack propagation
was formulated as a function of grain size (d).

2.3. Determination of the crack path
It is assumed that the path with the lowest released
energy is realized as the actual crack path, that is, the
crack path is determined using the following equation

*¼"¼ 53!/4!¼ */5%3

"G'3!*/
IC

d

!G"06/$!3:
IC Ad#

1

2
py2#qyB (11)

If *¼ is a positive number, the crack propagates
intergranularly because the released energy in inter-
granular crack propagation is lower than transgranu-
lar crack propagation. Thus, depending on sign of the
released energy in crack propagation (*¼ ), the actual
rack propagates transgranularly) y )y) d
P
y

0

G$%&-%#5*0/
IC

(t) dt"G"06/$!3:
IC A

1

2
py2#qyB (8)

It is assumed that the critical energy release rate for



*¼'0 (a crack propagates intergranularly) 0)y(y
C
1 (12)

A to B in Fig. 2b is equal to crack path is determined as follows
C 2

In other words, as shown in Fig. 5, an assumption is
made that when a crack arrives within the selective
region of intergranular fracture with a length of
y
C

(which was supposed to be a constant value a priori
in the previous study [16]), the crack propagates

intergranularly. y

C
is defined by the condition
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Figure 5 The relationship between crack path and arrival position
of a crack.

*¼"0. Therefore

!

1

2
G"06/$!3:

IC
py2

C
!G"06/$!3:

IC
qy

C

#(G'3!*/
IC

!G"06/$!3:
IC

)d"0 (13)

As a result, y
C

is derived as a function of grain size (d)
and the ratio of the critical energy release rate of grain
to that of grain boundary, (G'3!*/

IC
/G"06/$!3:

IC
) as follows

y
C
"

!q#Cq2#2A
G'3!*/

IC
G"06/$!3:

IC

!1BpdD
1@2

p
(d*d*)

y
C
"

d

2
(0(d(d*)

(14)

Taking it into consideration that y
C

ranges from 0 to
d/2 (d: grain size), as same as y, y

C
is classified accord-

ing to grain size. Here, d* in Equation 14 is expressed
as follows

d*"

8A
G'3!*/

IC
G"06/$!3:

IC

!1B!4q

p
(15)

Consequently, the crack path after reaching the point
A of the grain boundary is determined using Equa-
tions 12 and 14.

2.4. Derivation of the fraction of
transgranular fracture and the critical
energy release rate

First, the fraction of transgranular fracture is derived.

As a result of above section, the probability which
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a crack propagates transgranularly and intergranular-
ly is expressed as follows

y
CNA

d

2B"
2y

C
d

(intergranular fracture)

1!y
CNA

d

2B"
d!2y

C
d

(transgranular fracture)

(16)

Assuming that a crack virtually propagates through
n grains and that k grains break transgranularly,
which leads to the fraction of transgranular fracture to
be k/n. Thus, based on Equation 16, the expected
value of the fraction of transgranular fracture ( fK )
becomes

fK"
n
+
k/0

k

n n
C

kA
d!2y

C
d B

k

A
2y

C
d B

n~k
(17)

Equation 17 is arranged using the binomial theorem,
as follows

fK"
d!2y

C
d

n
+
k/1

n~1
C

k~1 A
d!2y

C
d B

k~1

A
2y

C
d B

n~k
(18)

"

d!2y
C

d

Thus, taking it into consideration that y
C

is a function
of grain size (d ) and the ratio of the critical energy
release rate of grain to that of grain boundary
(G'3!*/

IC
/G"06/$!3:

IC
), the expected value of the fraction of

transgranular fracture ( fK ) is also a function of d and
G'3!*/

IC
/G"06/$!3:

IC
.

Next, the critical energy release rate is derived.
When assuming that the crack virtually propagates in
x-direction by a distance (¸"nd ) which is assumed to
be sufficiently shorter than the length of a main crack
(2a), using Equations 1 and 10, the expected value of
the released energy (!ª ) of an actual crack extension
can be expressed as follows

!K "G'3!*/
IC

fK¸#G"06/$!3:
IC C1#

1

dy
C
P

yC

0
A
1

2
py2#qyBdtD

](1!fK )¸ (19)

Therefore, based on Equations 17 and 19, the expected
value of the critical energy release rate (GK

IC
) is ex-

pressed by

GK
IC
,

!ª
¸

"G'3!*/
IC

fK

#G"06/$!3:
IC C1#

1

dy
C
P

yC

0
A
1

2
py2#qyBdyD (1!fK )

"G'3!*/
IC A1!

2y
C

d B
#G"06/$!3:

IC A1#
p

6d
y2
C
#

q

2d
y
CB

2y
C

d
(20)

Thus, the critical energy release rate was a function of
grain size, (d) and the critical energy release rate of

grain and grain boundary (G'3!*/

IC
and G"06/$!3:

IC
).



3. Discussion
3.1. Influence of grain size on the fraction of

transgranular fracture and the critical
energy release rate

Fig. 6 shows an example of the numerical calculations
of the theory on the fraction of transgranular fracture
(Equation 18) taking p as 2 lm~1, q as 8.5, G'3!*/

IC
as

50 Jm~2 where G'3!*/
IC

is calculated taking the fracture
toughness as 4 MPam1@2, Young’s modulus as
300 GPa and Poisson’s ratio as 0.25. The solid lines
designate changes in the expected value of the fraction
of transgranular fracture accompanying a change in
grain size when G"06/$!3:

IC
varied from 2 J m~2, which is

typical value of thermodynamic surface energy of cera-
mics [19], to 50 J m~2, which is equal to G'3!*/

IC
. This

indicates that the fraction of transgranular fracture
increases with an increase in grain size. Furthermore,
it is found that the expected value of the transgranular
fracture fK increases with an increase in G"06/$!3:

IC
and it

reaches a constant value ( fK"1) G"06/$!3:
IC

is equal to
G'3!*/

IC
.

Fig. 7 shows an example of the numerical calcu-
lation of the theory on the critical energy release rate
(Equation 20). The solid lines designate changes in the
expected value of the critical energy release rate ac-
companying a change in grain size when G"06/$!3:

IC
was

varied between 2 J m~2 and 50 Jm~2 taking p as

Figure 6 The influence of G"06/$!3:
IC

on the fraction of transgranular
fracture estimated by Equation 17.

Figure 7 The influence of G"06/$!3: on the critical energy release rate

IC

estimated by Equation 20.
2 lm~1, q as 8.5, G'3!*/
IC

as 50 J m~2. This indicates that
the critical energy release rate increases with an in-
crease in grain size. Furthermore, it is found that the
expected value of the critical energy release rate GK

IC
in-

creases with an increase in G"06/$!3:
IC

and it reaches
a constant value (GK

IC
"G'3!*/

IC
) when G"06/$!3:

IC
is equal

to G'3!*/
IC

.

3.2. Comparison between theory and
experimental results

In the previous paper [15], the fracture toughness and
the fraction of transgranular fracture of polycrystal-
line Al

2
O

3
were measured using the controlled surface

flaw (CSF) method and the chevron notched beam
(CN) method. In this paper, the fraction of transgranu-
lar fracture and the critical energy release rate are
derived as a function of grain size (d ) and the critical
energy release rate of grain and grain boundary.
Therefore, the theory is compared with the experi-
mental results in the previous paper [15].

3.2.1. Comparison between theory and
experimental results on the fraction of
transgranular fracture

Here, the theory on the fraction of transgranular frac-
ture (Equation 18) is compared with the experimental
results in the previous paper [15]. Fig. 8 shows the
experimental data of the CSF specimens (open circles
in Figs 8 and 9) and of the CN method (closed circles
in Figs 8 and 9) on the fraction of transgranular
fracture and the regression curves which were esti-
mated by a least squares method using Equation 18
and experimental data [15]. In the least squares
method, by changing G'3!*/

IC
/G"06/$!3:

IC
, we tried to make

both curves of the CSF method and the CN method
most suitable for each experimental result at the same
time. Here, q was set to 8.5, and p to 3.2 lm~1 for the
CSF specimens (crack length a of CSF specimens is
150 lm) and to 0.32 lm~1 for the CN specimens
(crack length a of CSF specimens is 150 lm). This
figure indicates that both the theoretical curves mono-
tonically increase with an increase in grain size, and

Figure 8 The relationship between grain size and the fraction of
transgranular fracture. Open circles indicate experimental data on
CSF specimens. Closed circles indicate experimental data on CN
specimens. Parameters for drawing solid lines are

G'3!*/

IC
/G"06/$!3:

IC
"5.3, q"8.5, p"0.32 lm~1, 3.2 lm~1.
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Figure 9 The relationship between grain size and the critical energy
release rate. Open circles indicate experimental data on CSF speci-
mens. Closed circles indicate experimental data on CN specimens.
Parameters for drawing solid lines are G'3!*/

IC
"59 Jm~2,

G"06/$!3:
IC

"11 J m~2, q"8.5, p"0.32 lm~1, 3.2 lm~1.

they express the tendency of the grain size dependence
on the fraction of transgranular fracture of polycrys-
talline Al

2
O

3
. Furthermore, the value of the ratio of

the critical energy release rate of grain to that of grain
boundary (G'3!*/

IC
/G"06/$!3:

IC
) estimated by the regres-

sion analysis is 5.2.
It may be strange that this theory is dependent on

the main crack length, however, it can be understood
by taking into consideration the fact that the crack
deflection 90° cause the overestimation of p and q. If
a deflected angle is smaller, p is not much dependent
on the main crack length (2a) and this theoretical
result for the CSF method agrees with CN method.

As stated above, it is revealed that the stochastic
model proposed in this study expresses the change in
the fraction of transgranular fracture, namely, the
crack path.

3.2.2. Comparison between theory and
experimental results on the critical
energy release rate

Here, the theory on the critical energy release rate is
compared with the experimental results in the pre-
vious paper [15]. Fig. 9 shows the experimental data
of the CSF specimens (open circles in Figs 8 and 9) and
of the CN method (closed circles in Figs 8 and 9) on
the critical energy release rate and the regression
curves which were estimated by a least squares
method using Equation 20 and experimental data
[15]. In the least squares method, by changing
G'3!*/

IC
and G"06/$!3:

IC
, we tried to make both curves of

the CSF method and the CN method most suitable for
each experimental result at the same time. Here,
G'3!*/

IC
/G"06/$!3:

IC
was set to as 5.3, q to 8.5, and p to

3.2 lm~1 for the CSF specimens and to 0.32 lm~1 for
the CN specimens. This figure indicates that both the
theoretical curves monotonically increase with an in-
crease in grain size, and they express the tendency of
the grain size dependence on the critical energy release
rate of polycrystalline Al

2
O

3
. Furthermore, the value

of G'3!*/
IC

and G"06/$!3:
IC

estimated by the regression
analysis were 59 Jm~2 and 11 J m~2, respectively.

Although detailsof these values have not been under-

2346
stood yet, it reveals that grain in polycrystalline Al
2
O

3
is tougher than grain boundary. In the future, these
values should be estimated by other ways, for
example, measuring fracture toughness of single crys-
tal and bicrystal.

As shown in the above, the stochastic model pro-
posed here expresses the change in the critical energy
release rate, that is, the fracture toughness relative to
grain size.

4. Conclusions
The crack path of polycrystalline ceramics has been
theoretically analysed with a stochastic model based
on the difference between the released energies in
intergranular and transgranular crack propagation.
Assuming that the path with the lowest released en-
ergy should be realized as the actual crack path, the
expected values of the fraction of transgranular frac-
ture on fracture surface and the fracture toughness of
polycrystalline ceramics were formulated as functions
of grain size and the critical energy release rates of
grain and grain boundary. By comparison between
the theory and the experimental results, it was shown
that the stochastic model proposed here expressed the
change of the crack path and the fracture toughness of
polycrystalline Al

2
O

3
relative to grain size.
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